SFGT Facilities in Freiberg, Germany
History of Siemens Fuel Gasification Technology

- 1978 DBI
- 1990 Preussag Noell
- 2000 Babcock Borsig Power
- 2010 Future Energy / Sustec

- Located in Freiberg, Germany (40 km south-west of Dresden)
- Initial technology development with focus on low-rank, high-ash lignite
- First commercial plant with start-up in 1984, operated on lignite, coal and various residuals
- Own test plants (5 MW_{th} gasifier, feeding system, fuel analysis)

More than 20 years of successful operating experience
Siemens Fuel Gasification Technology

Plant Design and Siemens Energy Scope

Fuel
- Coal
- Lignite
- Petcoke
- Refinery residues
- Biomass

Gas Island
- Fuel preparation
- Air Separation Unit
- Gasifier Island
- CO Shift
- Sulfur Removal
- CO₂ Removal

Applications
- **Combined Cycle**
 - Power
- FT Synthesis
 - Transportation fuels
- Methanol Synthesis
 - Methanol
- Ammonia Production
 - Ammonia / Fertilizer
 - Hydrogen

Chemicals and Synfuel Production

- Siemens Basic Engineering & Design
- Siemens Supply of Key Equipment
- Siemens EPC

Copyright © Siemens AG 2008. All rights reserved.
Schematic of Gasifier Island

Process Design Package and Basic Engineering for

- Gasifier
- Feeding System
- Raw Gas Treatment
- Black Water Treatment
- Slag Discharge and Handling

Equipment Supply
Siemens Fuel Gasification (SFG) Technology Highlights

Dry feeding
- high efficiency
- high carbon conversion rate (> 98 %)
- can process low-rank coals

Cooling screen
- short start-up / shut-down
- low maintenance
- high availability

Full quench
- simple and reliable
- ideal for CO sour shift

Multi-fuel gasifier
- accepts a wide variety of fuels (e.g., bituminous & sub-bituminous coal, lignite, biomass, liquids)
- tar-free raw gas
Unique Cooling Screen Technology

Advantages

- Enables reduced reactor dimensions
- Leads to higher availability
- Self protecting
- Self-renewal of protection layer

![Diagram of cooling screen technology with membrane wall, pressurized water, ramming mass, and pipe coil with studs.]

![Graph showing temperatures of water, tube, ramming mass, and slag over time.]
Test facilities in Freiberg

- Gasifier reactor with cooling screen, 3-5 MW, max. 30 bar
- Different fuel feeding systems (300 kg/h)
 - Pulverized fuel dosing & feeding system
 - Slurry feeding
- Inert gas plant, 1000 Nm3/h, 80 bar
- Oxygen supply unit, 300 Nm3/h, 80 bar
- Full gas treatment
 - Desulphurization unit (Sulfoxx)
 - COS hydrolysis
 - HCN hydrolysis
- Waste water treatment
Testing facilities in Freiberg (Germany)

- Gasification tests with solid or liquid fuels
 - Determine plant specific data and gasification process characteristics
- High pressure test rig for solid fuel feeding
 - Test alternative coal flow measurement technologies
 - Investigate fluidization behavior under elevated pressure conditions
 - Test alternative dry feeding systems
- High temperature viscometer
 - Measure of slag melting behaviour
- Equipment for instrumental fuel analysis
Performance of SFG with different feedstocks

- More than 100 gasification tests performed with more than 60 different feedstocks
- Coals from Australia, Germany, Canada, South Africa, China,…
- Used to determine gasification behavior for fuels with difficult ash properties

Test results confirm that SFG offers widest fuel flexibility

- Anthracite
- Bituminous coals
- Sub-bit. coals
- Lignite
- Petcoke
- Tar oils
- Biomass
To Test or Not to Test

Customer Inquiry

Coal known

no

Ultimate / Proximate Analysis
Determination of Ash Fusion Temperature

Coal and Ash properties known

no

Slag Viscosity and Deeper Coal Analysis (e.g. Petrological)

yes

no

Determination of Moisture Level and Particle Size Distribution

yes

Fluidisation Tests

Gasification Tests for high Ash Containing Coals or critical Fusion Temperature

Basic Engineering Package and Project Execution
Liquid Residues: Gasification Project in the Czech Republic

Autothermal Oil Conversion Plant

Client Sokolovská uhelná, a.s.

Location, country Vřesová, Czech Republic

Commissioning 2008

Technical data

- **Type of reactor** Entrained-flow, cooling wall
- **Capacity thermal** 175 MWth
- **Pressure, temperature** 28 bar, 1400 °C
- **Type of quench system** Full quench

Equipment / subsystems

- **Feeding system** Liquid feeding
- **Gas cleaning** Spray scrubber
- **Soot water treatment** Depressurization and vapor condensation, sedimentation, chamber filter press

Feedstock

Generator tar and other liquid by-products of 26 fixed bed gasifiers

Products / By-products

Syngas to IGCC / slag, soot cake
Siemens Fuel Gasification Technology
Worldwide Activities

- Sherritt / EPCOR
 Lignite to Hydrogen & 380 MW_e IGCC

- Summit Power
 600 MW_e IGCC

- Secure Energy
 Coal to SNG, 1000 MW_{th}

- HQ Freiberg
 Sales Office

- Vresova
 Test Facility

- Sustec, Schwarze Pumpe
 200 MW_{th}, 1984

- NCPP, Coal to Polypropylene
 2500 MW_{th}

- JinCheng
 Coal to Ammonia
 1000 MW_{th}

- JV GSP China
 Siemens China Sales Office

- AEC
 Coal to Ammonia

Nine SFG-500 Gasifiers Being Manufactured,
Technology Selected and in Pre-Selection in Further Projects

As of 2008-04
NCPP: Largest Coal to Chemical Plant in China

5 x 500 MW_{th} Coal to Polypropylen plant, based in Ningxia

Schedule:
- Contract signed Q1/2007
- Gasifier shipment 2008
- Start Commissioning 2009

Project Structure:
- Integrated Project Management Team consisting of SNCG and AMEC

Siemens Scope:
- Engineering and Gasification Testing
- Equipment Supply
 - Gasifiers, Burners, Feeder Vessels, ...
- Training
- Technical Field Assistance
Manufacturing of the first two gasifiers is finished
Fertilizer plant near Jincheng, China

2 x SFG-500 gasifiers for ammonia & urea production

Customer: Shanxi Lanhua Coal Chemical Co.,

Products: 300,000 t/year ammonia
520,000 t/year urea

Coal: Anthracite
(FT ~ 1400°C, ash content ~20 %)

Siemens Scope:

- Feedstock gasification tests
- Basic engineering
- Gasification technology license
- Equipment supply
- Technical Field Assistance

Commercial operation: Mid of 2010
Secure Energy Decatur Gasification Project

Project Summary

• 20 Billion SCF/year of Synthetic Natural Gas
• Feedstock: IL Bituminous Coal
• Expected Startup: 2010

Project Features

• Sulfur sold as by-product
• CO2-capture ready
• Integrated in existing project site:
 • Buildings
 • Water treatment
 • Coal handling
 • Infrastructure

Secure Energy Project Site in Decatur, IL

2 Gasifiers under Manufacturing
Disclaimer

This document contains forward-looking statements and information – that is, statements related to future, not past, events. These statements may be identified either orally or in writing by words as “expects”, “anticipates”, “intends”, “plans”, “believes”, “seeks”, “estimates”, “will” or words of similar meaning. Such statements are based on our current expectations and certain assumptions, and are, therefore, subject to certain risks and uncertainties. A variety of factors, many of which are beyond Siemens’ control, affect its operations, performance, business strategy and results and could cause the actual results, performance or achievements of Siemens worldwide to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements. For us, particular uncertainties arise, among others, from changes in general economic and business conditions, changes in currency exchange rates and interest rates, introduction of competing products or technologies by other companies, lack of acceptance of new products or services by customers targeted by Siemens worldwide, changes in business strategy and various other factors. More detailed information about certain of these factors is contained in Siemens’ filings with the SEC, which are available on the Siemens website, www.siemens.com and on the SEC’s website, www.sec.gov. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in the relevant forward-looking statement as anticipated, believed, estimated, expected, intended, planned or projected. Siemens does not intend or assume any obligation to update or revise these forward-looking statements in light of developments which differ from those anticipated.

Trademarks mentioned in this document are the property of Siemens AG, its affiliates or their respective owners.